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Abstract

The shear strains of viscoelastic damping layers resulting from the attraction arrangement magnets on
the constraining layers root are higher than those of the conventional passive constrained layer damping
treatment (PCLD). Therefore, significant improvement of damping characteristics can be achieved by using
the new class of magnetic constrained layer damping treatment (MCLD). This paper presents an analytical
modelling to elucidate vibration attenuation mechanism of the MCLD. It is shown that the variation
amplitude of viscoelastic damping layers shear angle at the root where permanent magnets are fitted is
relatively high, producing relatively high dynamic magnetic force compared to the maximal force on the
constraining layers. The dynamic magnetic force is strong enough to reduce the elastic potential energy of
the constraining layers and the primary layer and enhances the dissipation energy of the damping layers.
The rise in the ratio of the dissipation energy to the total system energy per cycle suppresses the resonance
peak. Furthermore, influences of permanent magnets on resonance peaks for the first several modes under
different physical and geometrical properties are evaluated. Such evaluations are used to determine the
merits and limitations of the MCLD treatment and develop design guidelines.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Passive constrained layer damping treatments (PCLD) have been extensively utilized, for many
years, to damp out the vibration of flexible structures ranging from simple beams to complex
space structures. In practice, partial damping treatment is necessary because of material, thermal,
package, location and cost constraint [1]. Since the damping dissipation energy causes
temperature rise in operation, the damping performance decreases. Moreover, the visco-elastic
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materials (VEM) of optimal shear modulus G are not always available, thus better damping
performance is not always realized. In order to improve vibration reduction effects, numerous
papers have reported active constrained layer damping treatments (ACLD) [2,3]. Although the
ACLD treatments have proved to be successful in damping out structural vibration, they require
the use of amplifiers and control circuits. As simplicity, reliability, practicality and effectiveness
are our ultimate goal in controlling vibration and noise; the new concept of the magnetic
constrained layer damping treatment (MCLD) with attraction arrangement magnets is introduced
to eliminate the need for these circuits as well as any external energy [4,5]. But the vibration
attenuation mechanism of the MCLD treatment versus the PCLD treatment and the effects of
different physical and geometrical parameters on vibration reduction are not still understood
clearly. In this paper, the differential equations of motion of a partially covered sandwich
cantilever beam are derived employing Hamilton’s principle. The modelling is validated
experimentally. By analyzing the influence of permanent magnets on VEM’s shear strains and
force acting on the constraining layer (CL), the vibration attenuation mechanism of the MCLD
treatment versus the PCLD treatment is clearly understood. The effects of different physical and
geometrical parameters on resonance peaks are evaluated. Such evaluations are used to determine
the merits and limitations of the MCLD treatments and to develop design guidelines.

2. Vibration analysis

2.1. Magnetic partial constrained layer damping treatment

The partial MCLD treatment of sandwich cantilever beam is illustrated in Fig. 1. Fig. 1(a)
shows the undeflected configuration of the beam with permanent magnets of attraction
arrangement fixed on the root of CL and in the base respectively, while Fig. 1(b) shows the
deflected configuration under the action of an external bending moment M: When the beam is in
the undeflected configuration, the static magnetic attractive forces produce static shear strains g0
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Fig. 1. Magnetic partially constrained damping treatment: (a) undeflected configuration, (b) deflected configuration.
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in the top and bottom viscoelastic layers. In Fig. 1(b), due to the momentM; the gap between the
top magnets decreases, causing magnetic attractive force to rise, the increment of shear strain
gTM ¼ gT � g0 is higher than the shear strain of the PCLD under external load of the same
moment M: Further, the gap between bottom magnets rises, causing magnetic force to decrease,
the variation value of shear strain is also larger than that of the PCLD. Increasing these shear
strains enhances the energy dissipation. In this manner, significant improvement of the damping
characteristics can be achieved.

2.2. Magnetic force

2.2.1. Magnetic induction density

The value of magnetic induction density dB at the point Sð0;RÞ shown in Fig. 2(a), which is
produced by a straight wire of length a carrying a current Q along the x-axis can be calculated by
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Fig. 2. (a) Magnetic induction dB at the point Sð0;RÞ; (b) magnetic induction dB at the point Sðx;RÞ; (c); permanent
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Biot–Savart’s law:

dB ¼
m0

4p

Z a

0

jQ� r0j
r2

dx ¼
m0jQj
4p

Z a

0

sinðdx; r0Þ
r2

dx

¼
m0jQj
4p

Z a

0

R

ðR þ x2Þ3=2
dx ¼

m0jQj
4pR

sin j; ð1Þ

where m0 ¼ 4p� 10�7 H=m; r0 is a vector, dB is directed out of the page in Fig. 2(a), sin j ¼
a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ a2

p
:

In a like manner, the value of magnetic induction dB at the point Sðx;RÞ shown in Fig. 2(b) is
also given by

dB ¼
m0jQj
4pR

ðsin j1 þ sin j2Þ: ð2Þ

where sin j1 ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ x2

p
; sin j2 ¼ ða � xÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ða � xÞ2

q
:

2.2.2. Magnetic force between two permanent magnets
The magnetic force between two permanent magnets in the shape of rectangular prisms of edge

dimensions a; b; c and a0; b0; c0; arranged as shown in Fig. 2(c), can be calculated by the Tsui’s
method in which the magnetic moment of a permanent magnet is represented by an equivalent
face current loop [6–8]. It is assumed that each magnet is uniformly magnetized with
magnetizations J and J0 ðWb=m2Þ; oriented in the plus z direction. The magnets are represented
by volume current densities I and I0 ðA=m2Þ and by surface current densities K and K0 (A/m). The
volume current densities are given by

I ¼ r� ðJ=m0Þ and I0 ¼ r � ðJ0=m0Þ: ð3a;bÞ

The surface current densities are given by

K ¼ ðJ=m0Þ � n and K0 ¼ ðJ0=m0Þ � n
0; ð4a;bÞ

where n and n0 are unit vectors normal to the surfaces of the magnets. Since the magnets under
discussion in this paper have a strong coercive force and it is magnetized uniformly inside, its
volume currents vanish and only the surface currents exist.

For the magnet configuration in Fig. 2(c), ða0pa; b0pbÞ; the value of magnetic induction dB at
an arbitrary point Sðx0; y0; z0Þ on the side 10; which is produced by the current on the side 1, is given
by

dB ¼
Z 0

�c

m0jKj
4pR

ðsin j1 þ sin j2Þ dz; ð5Þ

where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0 � zÞ2 þ ð�b0=2þ b=2Þ2

q
; sin j1 ¼ ðx0 þ a=2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðx0 þ a=2Þ2

q
;

sin j2 ¼ ða=2� x0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ða=2 � x0Þ2

q
:
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For the adjacent sides 1 and 10; only the component of the magnetic induction dBy in the y

direction produces attractive force in the z direction, thus

dBy ¼
Z 0

�c

m0jKj
4pR

ðsin j1 þ sin j2 sin fÞ dz; ð6Þ

where sin f ¼ ðz0 � zÞ=R:
The magnetic attractive force dFz in the z direction at the point S produced by the surface

currents on the side 1 is given by

dFZ ¼ jK0jdz0ðdx0 � dByÞ: ð7Þ

Thus the attractive force in the z direction between sides 1 and 10 is given by

F1�10 ¼
Z a0=2

�a0=2

Z dþc0

d

jK0jj dx0 � dByj dz0

¼
m0jK

0jjKj
4pR

Z dþc0

d

Z a0=2

�a0=2

Z 0

�c

ðsin j1 þ sin j2 sin fÞ dz dx0 dz0: ð8Þ

F1�10 can be obtained using numerical integration methods.
Repulsive forces between sides 1 � 30; 3 � 10; 2 � 40 and 4 � 20 and attractive forces between

sides 2� 20; 3� 30 and 4 � 40 can also be calculated in a like manner. Since the magnetic
induction B at an arbitrary point Sðx0; y0; z0Þ on the side 20 (or 40), which is produced by the current
on the side 1, is parallel to the side 20 (or 40), the magnetic force in the z direction between sides 1
and 20 (or 40) is zero.

By symmetry, the components of force in the y and x directions cancel one another; only the z
direction components need to be calculated. The total attractive force Fm in the z direction is
given by

Fm ¼ 2ðjF1�10 j þ jF2�20 j � jF1�30 j � jF2�40 jÞ: ð9Þ

Fig. 3 shows J versus the magnetic field H and B versus H hysteresis curves for ideal permanent
magnets and the demagnetized curve of the magnet made of NdFeB. It can be seen that the
magnetization J can be calculated from the relationship

B ¼ m0Hþ J: ð10Þ

For a high-coercivity square-loop permanent magnet, J is equal to the residual induction Br [6].
In fact, the value of the magnetization J varies slightly through the volume of such magnets and
the condition of the magnet cannot be described by a single operating point, it is not possible to
make a precise calculation of the actual force. It is reasonable, however, to calculate the
approximate value on the basis of jJj ¼ jBrj for the magnets made of NdFeB used in this study
possessing the good square-loop demagnetization characteristics [6] shown in Fig. 3. When K is
calculated on the basis of jJj ¼ jBrj; Eq. (9) gives the maximum magnetic force at the separation
displacement. Note that, since the value m0jBHcj is very close to jBrj for magnets made of NdFeB
blocks, it is also reasonable to calculate the magnetic force Fm on the basis of jJj ¼ m0jBHcj:

Fig. 4 illustrates the variation of attractive force Fm with the gap d between two magnets made
of NdFeB blocks ð20� 5� 5 mmÞ with residual induction Br ¼ 11; 900 G and the demagnetized
coercive force BHc ¼ 10; 630 Oe and the intrinsic coercive force JHc ¼ 17; 660 Oe: It can be seen
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that the magnetic forces Fm on the basis of jJj ¼ jBrj or jJj ¼ m0jBHcj are in good agreement with
experimental results. The perfect agreement between experimental and analytical results
(maximum force, jJj ¼ jBrj) was also observed for the magnets with good square-loop
demagnetization characteristics in a previous paper [6].
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2.3. Basic equations

The beam can be separated into three sections (see Fig. 1(a)). Section 2 is a double sandwich-
type beam, and Sections 1 and 3 are ordinary beams. The differential equation of motion for
Section 1 is governed by (see Fig. 5(b)),

Dt1
@4w1

@x4

� �
þ m1

@2w1

@t2

� �
¼ 0: ð11Þ

The boundary conditions are

x ¼ 0: w1ðxÞ ¼ w0e
iot;

@w1ðxÞ
@x

¼ 0;

x ¼ L1: Dt1
@2w1

@x2
¼ M2; Dt1

@3w1

@x3
¼ S2: ð12a2dÞ

Now let us consider the vibration of Section 2. The following assumptions are made in the
analysis: (1) the beam deflection is small and uniform across any section; (2) the primary beam
and the upper and lower constraining beams are assumed to be isotropic; (3) the longitudinal and
rotary inertia effects of the beam are neglected; (4) the damping layers carrying shear, but no
direct stress, are assumed to be linear viscoelastic; and (5) no slip occurs at the interface between
the layers.

To simplify analysis, assuming the double sandwich beam to be symmetric, we choose static
equilibrium state as a reference. The longitudinal displacements and shear angles in the following
refer to the variation relative to the reference. Thus we have the relationships (see Fig. 5(a)):

u3 ¼ �u4;
@u3

@x
¼ �

@u4

@x
;

@u1

@x
¼ 0: ð13a2cÞ

The potential energy of Section 2 is

V ¼ ðV1 þ V3 þ V4Þbending þ ðV1 þ V3 þ V4Þextension þ ðVc1 þ Vc2Þshearing;
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ðV1 þ V3 þ V4Þbending ¼
1

2

Z L2

L1

Dt

@2w2

@x2

� �2

dx

ðV1 þ V3 þ V4Þextension ¼
Z L2

L1

E3A3
@u3

@x

� �2

dx;

ðVc1 þ Vc2Þshearing ¼
Z L2

L1

GcA2g2c dx: ð14a2dÞ

In Fig. 5(a), we have the relationships

u1 � u4 ¼ h2gc � Hy; u3 � u1 ¼ h2gc � Hy ð15a;bÞ

thus u3 ¼ h2gc � Hy; gc ¼ ðu3 þ HyÞ=h2; where H ¼ h2 þ ðh1 þ h3Þ=2:
After neglecting longitudinal and rotary inertia and assuming the mass of permanent magnets

to concentrate at x ¼ L1; the total kinetic of the Section 2 is

T ¼
1

2

Z L2

L1

m
@w2

@t

� �2

dx

" #
þ mmag

@w2

@t

� �2
					
x¼L1

: ð16Þ

Since the length of Section 1 is very short, the effect of pressure on work is negligible. The work
done by external force is given by

W ¼ �M2
@w2

@x

� �
þ S2w2


 �				
x¼L1

þWmag

		
x¼L1

þ M3
@w2

@x

� �
� S3w2


 �				
x¼L2

; ð17Þ

where Wmag is the work done by magnetic force Fm: Fm is the x direction component of the
magnetic force. Fm ¼ F07Fd ;F0 is the static component, Fd is the dynamic component resulting
from the gap variation Dx between magnets.

Fd ¼ ð@Fm=@xjx¼L1
ÞDx; ð18Þ

where Dx ¼ h2gc þ Hnð@w1=@xjx¼0 � @w2=@xjx¼L1
Þ;Hn ¼ h2 þ h3 þ ðh1 þ hmagÞ=2:

Since the sum of the work done by F0 acting on the primary and constraining layers is zero,
work done by Fd is only considered. The effect of two pairs of magnets is equivalent to a spring of
negative stiffness

Kd ¼ �2ð@Fm=@xÞjx¼L1
: ð19Þ

Applying Hamilton’s principle

d
Z t2

t1

ðT � V þ W Þ dt ¼ 0 ð20Þ

we obtain the differential equations of motion of Section 2

Dt
@4w2

@x4
� NH H

@2w2

@x2
þ

@u3

@x

� �
þ m

@2w2

@2t
¼ 0; ð21Þ

�2E3A3
@2u3

@x2
þ N H

@w2

@x
þ u3

� �
¼ 0: ð22Þ
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In addition, Hamilton’s principle yields the following beam boundary conditions:

x ¼ L2: Dt

@2w2

@x2
¼ M3; �Dt

@3w2

@x3
þ NH H

@w2

@x
þ u3

� �
¼ �S3; 2E3A3

@u3

@x
¼ 0;

x ¼ L1: � Dt
@2w2

@x2
þ M2 � KdðH � HnÞ ðH � HnÞ

@w2

@x
þ u3


 �
¼ 0; ð23a2cÞ

Dt

@3w2

@x3
� NH H

@w2

@x
þ u3

� �
� S2 þ 2mmag

@2w2

@t2
¼ 0;

� 2E3A3
@u3

@x
� Kd ðH � HnÞ

@w2

@x
þ u3


 �
¼ 0; ð24a2cÞ

where N ¼ 2Gcb0=h2:

2.4. Vibration analysis

To solve Eqs. (21) and (22) for harmonic vibrations, assume the solution to be of the form [9]

w2

u3

( )
¼

w2n

u3n

( )
ekxeiot; ð25Þ

where k denotes the unknown complex characteristic value, and o denotes the excitation
frequency. Substituting the expression for w2 and u3 into Eqs. (21) and (22) and eliminating u3; we
have

k6 þ s2k4 þ s1k2 þ s0 ¼ 0; ð26Þ

where s2 ¼ �ð2E3A3NH2 þ NDtÞ=ð2E3A3DtÞ; s1 ¼ �mo2=Dt; s0 ¼ mo2N=ð2E3A3DtÞ:
From Eq. (26), it can be seen that for any value of o; there would be six complex values of k:

Let k2i ði ¼ 1; 2;y; 6Þ denote the six zeros of Eq. (26), we then have, for Section 2,

w2ðxÞ ¼
X6

i¼1

C2ie
k2ix; ð27Þ

where C2i; k2i denote a complex value.
From Eqs. (21) and (22), we have

u3ðxÞ ¼
X6

i¼1

g2iC2ie
k2ix; ð28Þ

where g2i ¼ 2E3A3Dtk
5
2i=ðN

2HÞ � 2E3A3Hk3
2i=N � ½2E3A3mo2=ðN2HÞ þ H�k2i ði ¼ 1; 2;y; 6Þ:

For Section 1, assume the solution to be of the form

w1ðxÞ ¼
X4

i¼1

C1ie
k1ix; ð29Þ

where C1i and k1i denote complex values.
Repeating the above approaches, we can obtain the differential equation of motion and

boundary conditions of Section 3. Also, the continuous conditions of transverse displacement w
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and rotary angle y at x ¼ Li ði ¼ 1; 2Þ; yield supplementary conditions. The boundary equations
and supplementary conditions can be placed in a matrix representation to solve for the unknown
complex coefficients Cji by standard matrix inversion methods or ½D�fCg ¼ fWg: The following
expressions at arbitrary point in Section 2 can be deduced:

w2ðx;o; tÞ ¼ W0

X6

i¼1

C2ie
k2ixþiot; yðx;o; tÞ ¼ W0

X6

i¼1

k2iC2ie
k2ixþiot;

u3ðx;o; tÞ ¼ W0

X6

i¼1

g2iC2ie
k2ixþiot; gcðx;o; tÞ ¼ W0

X6

i¼1

C2iðHk2i þ g2iÞe
k2ixþiot;

Pðx;o; tÞ ¼ W0E3A3

X6

i¼1

C2ig2ie
k2ixþiot: ð30a2eÞ

3. Results and discussions

3.1. Experiment

The experimental parameters are h1 ¼ 0:8 mm; h3 ¼ 0:25 mm; h2 ¼ 4 mm; b0 ¼ 20 mm;
L ¼ 300 mm; damping length ¼ 100 mm; E1 ¼ E3 ¼ 7:10� 1010 Pa; r1 ¼ r3 ¼ 2:7 � 103 kg=m3;
r2¼150 kg=m3; lg G¼0:1015 lgo=2pþ 5:1817; Z¼3:3� 10�6 � ðo=2pÞ3 � 4:33� 10�4 � ðo=2pÞ2

þ2:09� 10�2 � ðo=2pÞ þ 0:1722: The permanent magnets are made of NdFeB blocks ð20� 5�
5 mmÞ with residual induction Br ¼ 11; 900 G and demagnetized coercive force BHc ¼ 10; 630 Oe
and intrinsic coercive force JHc ¼ 17; 660 Oe; and magnetized through x direction. The gap
between two magnets is 1 mm: The base of the beam is subjected to the sinusoidally varying
transverse displacement 0:2eiot: The vibration of the beam at the tip is monitored. In Fig. 6, it can
be seen that the first three resonance amplitudes are about 20% and 15% and 1%, respectively
less than those without magnets, and the natural frequencies of MCLD are also less than those of
PCLD. The theoretical values are in good agreement with experimental results.

3.2. Vibration attenuation mechanism

Analytical parameters chosen are the same as experimental ones. Fig. 7(a–e) show that the
influence of dynamic magnetic force Fd on VEM strains gc and force P acting on the constraining
layer. When a state of the first resonance exists, for the PCLD treatment, the maximal force P is
0:60 N (at xE45 mm). At x ¼ 1 mm; although the rotary angle is relatively very small, the
amplitude of shear strains gc is about 8:2� 10�3 rad; hence the longitudinal displacement becomes
relatively high ðu3 ¼ 3:6 � 10�2 mmÞ; having a potential for producing strong dynamic magnetic
force on the constraining layers. With attraction arrangement magnets, although the amplitude
decreases, the maximal shear strain gc is still about 7:9 � 10�3 rad at x ¼ 1 mm; resulting in
dynamic magnetic force Pjx¼L1

of 0:35 N whereas the maximal force Pmax is about 0:31 N at other
locations. Hence, the effect of Pjx¼L1

on the sandwich beam is significant enough to reduce the
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elastic potential energy of constraining layers and the primary layer and enhance the dissipation
energy of the damping layers. The rise of the ratio of dissipation energy to the total system energy
per cycle decreases the system resonance peaks. Similar conclusion can be obtained for the second
mode.

3.3. Effect of the geometrical and physical parameters

The following conditions are made in the analysis: (1) Gc ¼ 2 � 105ð1 þ 0:4iÞ (2) unless
otherwise stated, the parameters are identical to those in the experiment.

3.3.1. Effect of physical parameters
(1) Effect of VEM shear modulus: Fig. 8(a) illustrates the variation of resonance peaks achieved

by the PCLD/MCLD treatments with VEM shear modulus G: It can be seen for the PCLD
treatment that a minimal resonance peak is only obtainable at a particular value of Gopt and that
as G deviates from the Gopt; the resonance peak for the first mode would increase rapidly. The
same phenomenon was also observed for the fully covered damped sandwich beam [10]. In
practice, G would decrease resulting from the temperature rise in operation, and the VEM of
optimal shear modulus Gopt is not always available. Therefore, a better damping is not easily
obtained.

However, the improvement of MCLD for GoGopt is significant, whereas the improvement for
G > Gopt is not. The phenomenon can be explained as follows. For GoGopt; the shear strain gc

increases under the action of shear stress of the same value. As a result, the ratio of alternating
magnetic force Fd to the maximal force Pmax acting on the CL is increased, and the resonance
peak is suppressed. For G > Gopt; higher the G; higher the Pmax although the amplitude of shear
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angle is not small. For example, for Gc ¼ 4� 106ð1þ 0:4iÞ; although the amplitude of shear angle
for the first mode at x ¼ 1 mm is 4:2 � 10�3 rad; Fd is only 0:1 N; whereas Pmax ¼ 2:2 N acting on
the CL (Fig. 8(b and c)). The ratio of Fd to Pmax is small, not enough to affect the deformation of
the sandwich beam. A similar conclusion can be obtained for the higher modes.

The analysis presented above shows that significant improvement of damping characteristics
exists over a broad G range for GoGopt: This implies that the limitation to the VEM for the
MCLD is less than that for the PCLD, and the degeneration of damping characteristics because of
temperature rise can be compensated for to some extent using the MCLD.

(2) Effect of CL Young’s modulus: Fig. 9 illustrates the variation of resonance peaks with the CL
Young’s modulus E3 with E1 ¼ 2:1� 1011 Pa: These curves of MCLD are relatively parallel to
those of PCLD, but there are large spaces between the two treatments. The spaces between curves
also imply that the MCLD has significant improvement for different E3’s.
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Fig. 8. Effect of VEM shear modulus G: (a) variation of resonance peaks with VEM shear modulus G; (b) influence of
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H. Zheng, H. Zeng / Journal of Sound and Vibration 274 (2004) 801–819 813



3.3.2. Effect of the geometrical parameters
(1) Effect of damping length: Fig. 10(a) shows the vibration reduction ratios of the MCLD to the

PCLD varying with the coverage length from length ¼ 60 mm to full coverage for the first three
modes. These curves reveal that treatment length affects the ratios in a non-uniform way. For the
first mode, the MCLD treatment improves damping rather significantly over a large coverage
length range; however, for the higher modes, the MCLD induces damping rather significantly in
the beginning, but the curves descend rapidly while increasing the coverage, the improvement
eventually becomes marginal. The reason is that for higher modes the amplitude of shear angles
becomes relatively lower compared with that of shear angles at other locations as coverage length
keeps increasing, causing weak dynamic magnetic force (see Fig. 10(b and c)). Hence, for a too
long damping layer, using the MCLD induces less improvement of damping characteristics for
higher modes. Suitable coverage length can simultaneously control vibration for the first several
modes.
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(2) Effect of VEM thickness: As to the VEM thickness effects, Fig. 11 shows that for the
PCLD, h2’s effects on resonance peaks are non-uniform. When h2 is very thin, a small
amount of h2 increment improves damping drastically. Further increase of VEM thickness
induces less significant damping. However, for the MCLD, as expected, because thicker VEM
produces strong dynamical magnetic force Fd ; the resonance peaks decrease rapidly as h2 keeps
increasing for the first two modes, the improvement is not significant because of the effect of
damping length on the third mode. Therefore, the MCLD treatment has advantages over the
PCLD for thicker VEM.
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(3) Effect of CL thickness: Fig. 12 illustrates the variation of resonance peaks with CL thickness
h3: It can be seen that the improvement of damping characteristics of the MCLD still exists.

3.4. Effect of magnetic stiffness

Fig. 13 illustrates the variation of resonance peaks with magnetic stiffness Kd : It can be seen
that, if Kd is lower than some value K0 (K0E1 � 103 N=m for 1st mode), using MCLD would
have little improvement. Fortunately, the rare earth permanent magnets, such as NdFeB can
supply enough high Kd as shown in Fig. 4. After Kd exceeds K0; increasing Kd ; drastically
increases the resonance peaks. But for higher modes K0 becomes higher. Hence enhancing
dynamic magnetic force can significantly improve vibration reduction effect.
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4. Conclusions

In this paper, the differential equations of motion of a partially covered sandwich cantilever
beam are derived employing Hamilton’s principle. The modelling is validated experimentally. By
analyzing the influence of permanent magnets on VEM’s shear strains and force acting on the
constraining layer, the vibration attenuation mechanism of the MCLD treatment versus the
PCLD treatment is understood clearly. The effects of different physical and geometrical
parameters on resonance peaks are evaluated. The following conclusions were obtained in order
to determine the merits and limitations of MCLD treatments and to develop design guidelines:

(1) Significant improvement of the damping characteristics can be achieved by using the MCLD
treatment. The analyses reveal that the variation amplitude of VEM shear angle at the root where
permanent magnets are fitted is relatively high, producing relatively high dynamic magnetic force
compared to the maximal force on the CL. The dynamic magnetic force is strong enough to
reduce the elastic potential of the constraining layers and primary layer and enhance the
dissipation energy of the damping layers. The rise of the ratio of dissipation energy to the total
system energy per cycle decreases the resonance peaks.

(2) As the damping layer thickness increases to some extent, the use of the MCLD can
significantly improve the damping characteristics of PCLD treatments.

(3) As the damping length increases, using MCLD is still effective in reducing vibration for the
first mode, but the effect decreases drastically for higher modes as coverage length keeps
increasing. Suitable damping length can simultaneously improve damping effects for the first
several modes.

(4) The interaction between the magnets and the sandwich beam is sensitive to the VEM’s shear
modulus G: Increasing G decreases the improvment of the MCLD. The limitation to the VEM for
the MCLD is less than that for the PCLD, and the degeneration of damping characteristics
because of temperature rise can be compensated for to some extent using the MCLD.
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(5) Using the MCLD has also effect on improving the damping characteristics for different
Young’s modulus and thickness of the CL.

(6) For lower magnetic stiffness Kd ; using MCLD would have little improvement whereas
resonance peaks would decrease drastically for higher magnetic stiffness as Kd keeps increasing.

Appendix A. Nomenclature

B magnetic induction
H magnetic field
J; J0 magnetization
I; I0 volume current density
K; K0 surface current density
n; n0 unit vector normal to the surfaces of the magnets
Dt1 ¼ 1

12
E1b0h3

1 bending rigidity of the primary beam
Ei Young’s modulus of the ith layer
G storage shear modulus
Z loss factor of the damping layer
Gc ¼ Gð1þ iZÞ complex shear modulus of damping layer
m1 mass per unit length of the primary beam
Dt ¼

b0ðE1h3
1
þ2E3h3

3
Þ

12
bending rigidity of the sandwich section

m mass density per unit length of sandwich section
mmag mass of a magnet
hmag thickness of a magnet
Mi bending moment of cross-section
Si shear force of cross-section length length of coverage
L total length of beam
hi thickness of the ith layer
ri mass density of the ith layer material
Ai ¼ bhi transverse cross area of the ith layer
P alternating axial force of the constraining layer
ui alternating axial displacement of ith layer
wi transverse displacement of the ith section
t time
b0 width of beam
i ¼

ffiffiffiffiffiffiffi
�1

p
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